Highway Hierarchies Hasten
Exact Shortest Path Queries

Peter Sanders'* and Dominik Schultes!2

! Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany
sanders@ira.uka.de
2 Universitat des Saarlandes
mail@dominik-schultes.de

Abstract. We present a new speedup technique for route planning that
exploits the hierarchy inherent in real world road networks. Our algo-
rithm preprocesses the eight digit number of nodes needed for maps of
the USA or Western Europe in a few hours using linear space. Shortest
(i.e. fastest) path queries then take around eight milliseconds to pro-
duce exact shortest paths. This is about 2 000 times faster than using
Dijkstra’s algorithm.

1 Introduction

Computing shortest paths in graphs (networks) with nonnegative edge weights
is a classical problem of computer science. From a worst case perspective, the
problem has largely been solved by Dijkstra in 1959 [I] who gave an algorithm
that finds all shortest paths from a starting node s using at most m + n priority
queue operations for a graph G = (V, F) with n nodes and m edges.

However, motivated by important applications (e.g., in transportation net-
works), there has recently been considerable interest in the problem of acceler-
ating shortest path queries, i.e., the problem to find a shortest path between a
source node s and a target node t. In this case, Dijkstra’s algorithm can stop as
soon as the shortest path to ¢ is found.

A classical technique that gives a constant factor speedup is bidirectional
search which simultaneously searches forward from s and backwards from ¢ until
the search frontiers meet. All further speedup techniques either need additional
information (e.g., geometry information for goal directed search) or precomputa-
tion. There is a trade-off between the time needed for precomputation, the space
needed for storing the precomputed information, and the resulting query time.
In Section [Il we review existing precomputation approaches, which have made
significant progress, but still fall short of allowing fast exzact shortest path queries
in very large graphs.

In particular, from now on we focus on shortest paths in large road networks
where we use ‘shortest’ as a synomym for ‘fastest’. The graphs used for North

* Partially supported by DFG grant SA 933/1-2.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 568-[579] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Highway Hierarchies Hasten Exact Shortest Path Queries 569

America or Western Europe already have around 20 000 000 nodes so that sig-
nificantly superlinear preprocessing time or even slightly superlinear space is
prohibitive. To our best knowledge, all commercial applications currently only
compute paths heuristically that are not always shortest possible. The basic idea
of these heuristics is the observation that shortest paths “usually” use small roads
only locally, i.e., at the beginning and at the end of a path. Hence the heuristic
algorithm only performs some kind of local search from s and t and then switches
to search in a highway network that is much smaller than the complete graph.
Typically, an edge is put into the highway network if the information supplied
on its road type indicates that it represents an important road.

Our approach is based on the idea to compute ezact shortest paths by defin-
ing the notion of local search and highway network appropriately. This is very
simple. We define local search to be a search that visits the H closest nodes from
s (or t) where H is a tuning parameter. This definition already fixes the highway
network. An edge (u,v) € E should be a highway edge if there are nodes s and ¢
such that (u,v) is on the shortest path from s to ¢, v is not within the H closest
nodes from s, and u is not within the H closest nodes from ¢. Section [2] gives a
more formal definition of the basic concepts used in this paper.

One might think that an expensive all-pairs shortest path computation is
needed to find the highway network. However, in Section B we show that each
highway edge is also within some local shortest path tree B rooted at some s € V'
such that all leaves of B are “sufficiently far away” from s.

So far, the highway network still contains all the nodes of the original network.
However, we can prune it significantly: Isolated nodes are not needed. Trees
attached to a biconnected component can only be traversed at the beginning
and end of a path. Similarly, paths consisting of nodes with degree two can be
replaced by a single edge. The result is a contracted highway network that only
contains nodes of degree at least three. We can iterate the above approach, define
local search on the highway network, find a “superhighway network”, contract
it,... We arrive at a multi-level highway network — a highway hierarchy.

Section @] develops a query algorithm that uses highway hierarchies. After
several correctness preserving transformations we get a bidirectional, Dijkstra-
like search in a single graph that contains all levels. The only modifications affect
the selection of edges to be relaxed and how to finish the search when the search
frontiers from s and ¢ meet.

In Section[Blwe summarise experiments using detailed road networks for West-
ern Europe and the USA. Using a uniform neighbourhood size of 125 and 225 re-
spectively, the graphs shrink geometrically from level to level. This leads to prepro-
cessing time around four hours and average query times below 8 ms. Possible future
improvements are discussed in Section[6l Proofs and additional experimental data
can be found in the full version at http://www.dominik-schultes.de/hwy/.

Related Work

There is so much literature on shortest paths and preprocessing that we can
only highlight selected results that help to put our results into perspective. In
the following, speedup refers to the acceleration compared to the unidirectional

http://www.dominik-schultes.de/hwy/

570 P. Sanders and D. Schultes

variant of Dijkstra’s algorithm that stops when the target is found. For recent,
more detailed overviews we refer to [213].

Perhaps the most interesting theoretical results on route planning are algo-
rithms for planar graphs that might be adaptable to route networks since those
are "almost planar. Using O(n log® n) space and preprocessing time, query time
O(y/nlogn) can be achieved [4] for directed planar graphs without negative cy-
cles. Queries accurate within a factor (1 + €) can be answered in near constant
time using O((nlogn)/e) space and preprocessing time [5]. However, for very
large graphs we need linear space consumption so that these approaches seem
not directly applicable to the problem at hand.

The previous practical approach closest to ours is the separator based multi-
level method [6]. The idea is to partition the graph into small subgraphs by
removing a (hopefully small) set of separator nodes. These separator nodes to-
gether with edges representing precomputed paths between them constitute the
next level of the graph. Queries then only need to search in the partitions of
s and t and in the higher level graph. This process can be iterated. At least
for road networks speedups so far seem to be limited to a factor around ten
whereas better speedup can be observed for railway transportation problems [6].
Disadvantages compared to our method are that performance depends on very
small (and thus hard to find) separators and that the higher level graphs get
quite dense so that going to many levels quickly reaches a point of diminishing
return. In contrast, our method has a very simple definition of what constitutes
the higher level graphs and our higher level graphs remain sparse.

Reach based routing [7] excludes nodes from consideration if they do not
contribute to any path long enough to be of use for the current query. Speedups
up to 20 are reported for graphs with about 400 000 nodes using about 2 hours
preprocessing time. Our method is an order of magnitude faster both in terms
of query time and in terms of preprocessing time.

Most other preprocessing techniques are different from our approach in that
they focus the search towards the target. Very high speedups (hundreds or even
around 2000) are reported for geometric containers [8I3] and bit vectors [9UI0].
Both methods store information with each edge. Queries use this information to
decide whether this edge can possibly lead to the target. Our method achieves
similar speedups but needs much less time for preprocessing: To compute k-
bit vectors, O(v/kn) global shortest path searches are needed (assuming planar
graphs) and geometric containers even need an all-pairs computation.

An interesting alternative are landmark based lower bounds for strengthening
goal directed search [2]. For global queries, about 16 global shortest path com-
putations during preprocessing suffice to achieve speedup around 20. However,
the landmark method needs a lot of space — one distance value for each node-
landmark pair. It is also likely that for real applications each node will need to
store distances to different sets of landmarks for global and local queries. Hence,
landmarks have very fast preprocessing and reasonable speedups but consume
too much space for very large networks.

Highway Hierarchies Hasten Exact Shortest Path Queries 571

2 Preliminaries

We expect an undirected graph G = (V, E) with n nodes and m edges with
nonnegative weights as inputl] We assume w.l.o.g. that there are no self-loops,
parallel edges, or zero weight edges in the input — they could be dealt with easily
in a preprocessing step. The length w(P) of a path P is the sum of the weights of
the edges that belong to P. P* = (s,...,t) is a shortest path if there is no path
P’ from s to t such that w(P’) < w(P*). The distance d(s,t) between s and ¢ is
the length of a shortest path from sto t. If P = (s,..., s uj,ua,. .., ug, t', ... t)
is a path from s to t, then Ply_p = (s',u1,ug,...,uk,t') denotes the subpath
of P from s’ to t'.

Dijkstra’s Algorithm. In the context of Dijkstra’s algorithm, we use the following
terminology: each node is either unreached, reached, or settled. If a node u is
reached, at least one path (not necessarily the shortest one) from the source
node s to u has been found and u has been inserted into the priority queue. If a
node v is settled, it is reached and has been removed from the priority queue by
a deleteMin operation; a shortest path from s to v has been found.

Canonical Shortest Paths. A selection of shortest paths SP contains for each
connected pair (s,t) € V x V exactly one shortest path from s to ¢. Such a
selection is called canonical if P = (s,...,s',...,t',...,t) € SP implies that
P|y_p € SP. The elements of a canonical selection are called canonical short-
est paths. If Dijkstra’s algorithm is started from each node s € V, for each
connected pair (s,t) exactly one shortest path is determined. In the full paper
some modifications of Dijkstra’s algorithm are described which ensure that the
obtained selection of shortest paths is canonical.

Locality. Let us fix any rule that decides which element Dijkstra’s algorithm
removes from the priority queue when there is more than one queued element
with the smallest key. Then, during a Dijkstra search from a given node s, all
nodes are settled in a fixed order. The Dijkstra rank rs(v) of a node v is the
rank of v w.r.t. this order. s has Dijkstra rank r4(s) = 0, the closest neighbour
vy of s has Dijkstra rank r4(v1) = 1, and so on. For a given node s, the distance
of the H-closest node from s is denoted by dg(s), i.e., du(s) = d(s,v), where
rs(v) = H. The H-neighbourhood Ny (s) (or just neighbourhood N(s)) of s is
N(s) :=={v eV |d(s,v) <dg(s)}. B

Highway Hierarchy. For a given parameter H, the highway network Gi =
(Vi,Eq) of a graph G is defined as the set of edges (u,v) € E that appear
in a canonical shortest path (s,...,u,v,...,t) from a node s € V to a node

! Unless otherwise stated, we always deal with undirected edges. The restriction to
undirected graphs simplifies the presentation of our approach and the implementa-
tion. However, our method can be generalised to directed graphs.

2 For directed graphs we also need an analogous value dr(+) that refers to the reverse
graph G := (V,{(v,u) | (u,v) € E}). N(-) is defined correspondingly. From now on,
whenever the target node ¢ or the backward search from ¢ is concerned, we have to
keep in mind that G, dr(-), and N(-) apply.

572 P. Sanders and D. Schultes

t € V with the property that v ¢ Ng(s) and u € Ng(t). The set Vi is the
maximal subset of V' such that G; contains no isolated nodes.

The 2-core of a graph is the maximal vertex induced subgraph with minimum
degree two. A graph consists of its 2-core and attached trees, i.e., trees whose
roots belong to the 2-core, but all other nodes do not belong to it. A line in a
graph is a path (ug,u1,...,ur) where the inner nodes u1,...,u;—1 have degree
two. From the highway network G of a graph G, the contracted highway network
G, of the graph G is obtained by taking the 2-core of G; and, then, removing the
inner nodes of all lines (ug, u1, . .., ug) and replacing each line by an edge (ug, uk).
Thus, the highway network G consists of the contracted highway network (or
short, just core) G and some components, where ‘component’ is used as a generic
term for ‘attached tree’ and ‘line’. In this paper, ‘components’ is used always in
this specific sense and not to denote ‘connected components’ in general.

The highway hierarchy is obtained by applying the process that leads from
G to G iteratively. The original graph Go := G, := G constitutes Level 0 of the
highway hierarchy, G corresponds to Level 1, the highway network Gs of the
graph G} is called Level 2, and so on.

3 Construction

For each node sg € V, we compute and store the value dg (sg). This can be easily
done by a Dijkstra search from each node s that is aborted as soon as H nodes
have been settled. Then, we start with an empty set of highway edges E;. For
each node sg, two phases are performed: the forward construction of a partial
shortest path tree B and the backward evaluation of B. The construction is done
by a single source shortest path (SSSP) search from sg; during the evaluation
phase, paths from the leaves of B to the root sg are traversed and for each edge
on these paths, it is decided whether to add it to E; or not. The crucial part is
the specification of an abort criterion for the SSSP search in order to restrict it
to a ‘local search’.

Phase 1: Construction of a Partial Shortest Path Tree. A Dijkstra search from
so is executed. During the search, a reached node is either in the state active
or passive. The source node sg is active; each node that is reached for the first
time (insert) and each reached node that is updated (decreaseKey) adopts the
activation state from its (tentative) parent in the shortest path tree B. When a
node p is settled using the path (sg, s1,...,p), then p’s state is set to passive if
IN(s1) " N(p)| < 1. When no active unsettled node is left, the search is aborted
and the growth of B stops.

Phase 2: Selection of the Highway Edges. During Phase 2, all edges (u,v) are
added to E; that lie on paths (sg,...,u,,...,t) in B with the property that
v & N(so) and u & N(to), where tg is a leaf of B. This can be done in time O(|B).

Theorem 1. An edge (u,v) € E is added to Eq by the construction algorithm iff
it belongs to some canonical shortest path P = (s,... u,v,...,t) and v & N(s)

and u & N(t).

Highway Hierarchies Hasten Exact Shortest Path Queries 573

Speeding Up Construction. An active node v is declared to be a maverick if
d(sg,v) > f-dm(so), where f is a parameter. When all active nodes are mavericks,
the search from passive nodes is no longer continued. This way, the construction
process is accelerated and E7 becomes a superset of the highway network. Hence,
queries will be slower, but still compute exact shortest paths. The maverick factor
f enables us to adjust the trade-off between construction and query time.

Theorem 2. The highway network can be contracted in time O(m + n).

Highway Hierarchy. The result of the contraction is the contracted highway
network G, which can be used as input for the next iteration of the construction
procedure in order to obtain the next level of the highway hierarchy.

4 Query

The highway hierarchy G = (V,&) consists of the graphs Gy, G1,Ga,...,Gy,
which are arranged in L+1 levels. For eachnode v € V and each i € {j | v € V}},
there is one copy of v, namely v;, that belongs to level i of G. Accordingly, there
are several copies of an edge (u,v) when u and v belong to more than one
common level. These edges, which connect two nodes in the same level, are
called horizontal edges. Additionally, G contains a directed edge (vg,vey1) for
each pair vy € Vp,vp41 € Vpy1, where vy and vg4q are copies of the same node v.
These additional edges are called wvertical and have weight 0. For each node v,
not only one value dy (v) is known, but for each level ¢ < L, there is a distance
d%; (v) from v to the H-closest node in the graph G; if a node v does not belong
to G, d% (v) is defined to be +o0; furthermore, d% (v) := +o00. Correspondingly,
we use the notation N*(v) to refer to the set {v' € V// | d(v,v’) < d%(v)}, which
is the neighbourhood of v in the graph G',. Note that the neighourhood of a node
that belongs to a component is unbounded, i.e., it contains all nodes of the core
of the corresponding level. The same applies to N’ (v), for any v.

The multilevel query algorithm that works on G is a modification of the
bidirectional version of Dijkstra’s algorithm. The source and target nodes of an
s-t query are the corresponding copies of s and ¢ in level 0. For the time being,
we omit the abort-on-success criterion, i.e., we do not abort when both search
scopes meet, but continue until both searches terminate; then, we consider all
nodes that have been settled from both sides as meeting points and take the
shortest path that has been found by this means. The modifications consist of
two restrictions:

1. In each level £, no horizontal edge is relaxed that would leave the neighbour-
hood N'*(v*) of the corresponding entrance point v*. Each node that belongs
to the core and has been settled via a horizontal edge that leaves a compo-
nent and each node that has been settled via a vertical edge is an entrance
point. In addition, the source and the target nodes of the query are entrance
points. The corresponding entrance point of a settled node v is the last en-
trance point on the path to v.

574 P. Sanders and D. Schultes

2. Components are never entered using a horizontal edge. An edge (u,v) enters
a component if either v belongs to the core and v to a component or v belongs
to a line and v to an attached tree. However, an edge from an attached tree
to a line leaves the attached tree and does not rank among the edges that
enter a component. Note that the endpoint(s) of a component do not belong
to the component but to the core (or to the line in case of the root of a tree
that is attached to a line).

Theorem 3. For any given s,t € V, the multilevel query algorithm finds the
shortest path from s to t in G.

Proof Idea. It is known that the bidirectional version of Dijkstra’s algorithm
works correctly. We have to show that the imposed restrictions do not affect the
correctness. When Restriction 1 applies, it is always possible to switch to the
next level using a vertical edge. Due to the definition of the highway network,
it is guaranteed that the corresponding part of the shortest path which we are
looking for can be found in the next level. A path from s that enters a component
is not traversed due to Restriction 2. However, from the point of view of ¢, this
path leaves the component so that the edge that has been skipped during the
search from s can be relaxed in the reverse direction during the search from ¢.
Hence, the path can be found in spite of Restriction 2. These arguments can be
used in an inductive proof over the number of levels. O

Collapse of the Vertical Dimension. So far, we allow that several copies of the
same node are reached. However, it can be shown that it is sufficient if at most
one copy of a node is reached via a horizontal edge, namely the copy with the
smallest tentative distance or, if there are several copies with the same smallest
tentative distance, the copy in the lowest level.

Due to this observation, we can let the vertical dimension collapse. We can
interpret the highway hierarchy G as one plain graph, i.e., there are no copies of
the nodes distributed over several levels. Basically, this graph corresponds to the
original graph G enhanced by some additional data: each edge (u,v) is assigned
a maximum level ¢(u,v), i.e., it belongs to the levels 0,1, ..., £(u, v); each node v
is assigned to at most one component ¢(v); a component ¢(v) belongs to a certain
level ¢(c(v)), which is equal to the level its inner edges belong to. Furthermore,
the value d(v) is stored only if v € G. Our implementation is based on this
interpretation of G.

Abort-on-Success. In the bidirectional version of Dijkstra’s algorithm, we can
abort as soon as both search scopes meet, i.e., there is one node v that is settled
in both search scopes. Then, the shortest path P from s to ¢t does not necessarily
consist of the shortest paths from s to v and from v to ¢, but it is well known that
it is always ensured that the right meeting point v’ has already been reached
from both sides. The crucial precondition for this fact is that all nodes whose
distance from s is less than d(s,v) have been settled in the search scope of s,
and all nodes whose distance from ¢ is less than d(t,v) have been settled in the
search scope of t.

Highway Hierarchies Hasten Exact Shortest Path Queries 575

Unfortunately, we cannot adopt the abort-on-success criterion as it stands
because, in general, the multilevel query algorithm does not fulfil this precondi-
tion as several edges are not relaxed due to Restriction 1 and 2 so that we cannot
guarantee that all nodes up to a certain distance have been settled. We have al-
ready shown that the algorithm is correct all the same because if an ‘important’
edge is not relaxed (e.g. a component is not entered), then it is relaxed from the
other side (e.g. the component is left). However, we have to wait until the reverse
search has relaxed this edge, i.e., we must not abort too early. Nevertheless, even
if we have skipped an edge e = (u,v) at node u, we can abort after both search
scopes have met as soon as it is certain that e will not be relaxed from v during
the final steps of the search. We can use the following approach. Let £ denote
the set of all horizontal edges that have been skipped during the search from s.
& is defined accordingly. After both search scopes have met, we can abort as
soon as the search from ¢ has finished search level /, := max,cg, £(e) and the
search from s has finished level ét = maxeeg, £(e). A search level ¢ is finished
when there are no reached but unsettled nodes in level ¢ or below. If the search
level ¢ is finished, edges e in levels ¢(e) < ¢ cannot be relaxed any longer. Hence,
when the search from ¢ has finished search level /,, it is certain that no edge
e that belongs to a level £(e) < ?, will be relaxed during the final steps of the
search, in particular, no edge that has been skipped during the search from s will
be traversed by the backward search. There are several possibilities to further
improve this abort criterion, which are described in the full paper.

5 Experiments

Implementation. We use a binary heap priority queue. Our current implemen-
tation leaves room for reducing both running time and memory usage.

Environment. The experiments were done on a 64-bit machine with 8 GB main
memory and 1 MB L2 cache, using one out of four AMD Opteron processors
clocked at 2.2 GHz, running SuSE Linux (kernel 2.6.5). The program was com-
piled by the GNU C++4 compiler 3.3.3 using optimisation level 3.

Instances. Basically, we deal with two test instances, namely, the road networks
of the United States of America (minus Alaska and Hawaii) and of Western Eu-
rope. The former was obtained from the TIGER/Line Files [11] by merging the
relevant data of all counties. The latter contains the 14 European countries Aus-
tria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK. The data has been
made available for scientific use by the company PTV AG. In some cases, we
restrict our experiments to the German road network. In all cases, as we deal
with undirected graphs, we ignored the restrictions caused by one-way streets.

The original graphs contain for each edge a length and a road category, e.g.,
motorway, national road, regional road, urban street. We assign average speeds
to the road categories, compute for each edge the average travel time, and use it
as weight. Table [[l summarises important properties of the used road networks
and the key results of the experiments.

576 P. Sanders and D. Schultes

Table 1. Overview of the used road networks and key results. The parameter H is
used iteratively until the construction leads to an empty highway network. We pro-
vide average values for 10 000 queries, where the source and target nodes are chosen
randomly. ‘Speedup’ refers to a comparison with Dijkstra’s algorith. ‘Efficiency’ [2]
denotes the number of nodes that belong to the computed shortest paths divided by
the number of nodes that are settled by the multilevel query algorithm. For Germany,
we give the memory usage on a 32-bit machine in parentheses.

USA Europe Germany

#nodes 24 278 285 18 029 721 4 345 567

input #edges 29 106 596 22 217 686 5 446 916
#degree 2 nodes 7 316 573 2 375 778 604 540

#road categories 4 13 13

parameters average speeds [km/h] 40-100 10-130 10-130
H 225 125 100

construction CPU time [h:min] 4:15 2:41 0:30
#levels 7 11 11

CPU time [ms] 7.04 7.38 5.30

#settled nodes 3912 4 065 3 286

speedup (CPU time) 2 654 2 645 680

query speedup (#settled nodes) 3033 2 187 658
efficiency 113% 34% 13%

main memory usage [MB] 2 443 1 850 466 (346)

Fast vs. Precise Construction. During various experiments, we came to the con-
clusion that it is a good idea not to take a fixed maverick factor f for all levels
of the construction process, but to start with a low value (i.e. fast construction)
and increase it level by level (i.e. more precise construction). For the following
experiments, we used the sequence 0,2,4,6,

Best Neighbourhood Sizes. For two levels ¢ and ¢ + 1 of a highway hierarchy,
the shrinking factor is the ratio between |E)| and [Ej, |. In our experiments,
we observed that the highway hierarchies of the USA and Europe were almost
self-similar in the sense that the shrinking factor remained nearly unchanged
from level to level when we used the same neighbourhood size H for all levels.
We kept this approach and applied the same H iteratively until the construction
led to an empty highway network. Figure [Il demonstrates the shrinking process
for Europe. For most levels, we observe an almost constant shrinking factor
(which appears as a straight line due to the logarithmic scale of the y-axis).
The greater the neighbourhood size, the greater the shrinking factor. The first
iteration (Level 0—1) and the last few iterations are exceptions: at the first
iteration, the construction works very well due to the characteristics of the real
world road network (there are many trees and lines that can be contracted);
at the last iterations, the highway network collapses, i.e., it shrinks very fast,
because nodes that are close to the border of the network usually do not belong

3 The averages for Dijkstra’s algorithm are based on only 1 000 queries.

Highway Hierarchies Hasten Exact Shortest Path Queries 577

| | | | | |
107 | H=75 ——
H=125
33 H=175 --X
6 b]
107 H=300 (-
10° A .
@ X
4] 4 S]
%’ 10 Ee) * g
X
1000 |- i
*
100 |) -
10 |- .
1 ! ! L e 1y ! !
0 2 4 6 8 10 12 14 16
level

Fig. 1. Shrinking of the highway networks of Europe. For different neighbourhood
sizes H and for each level £, we plot |Ej), i.e., the number of edges that belong to the
core of level /.

to the next level of the highway hierarchy, and when the network gets small,
almost all nodes are close to the border.

Multilevel Queries. Table[Il contains average values for queries, where the source
and target nodes are chosen randomly. For the two large graphs we get a speedup
of more than 2 000 compared to Dijkstra’s algorithm both with respect to (query)
timed and with respect to the number of settled nodes.

For our largest road network (USA), the number of nodes that are settled
during the search is less than the number of nodes that belong to the shortest
paths that are found. Thus, we get an efficiency that is greater than 100%. The
reason is that edges at high levels will often represent long paths containing
many nodes

For use in applications it is unrealistic to assume a uniform distribution
of queries in large graphs such as Europe or the USA. On the other hand, it
would be hardly more realistic to arbitrarily cut the graph into smaller pieces.
Therefore, we decided to measure local queries within the big graphs: For each
power of two r = 2%, we choose random sample points s and then use Dijkstra’s
algorithm to find the node ¢ with Dijkstra rank rs(t) = r. We then use our
algorithm to make an s-t query. By plotting the resulting statistics for each
value r = 2*, we can see how the performance scales with a natural measure of
difficulty of the query. Figure [2 shows the query times. Note that the median

4 Tt is likely that Dijkstra would profit more from a faster priority queue than our
algorithm. Therefore, the time-speedup could decrease by a small constant factor.

5 The reported query times do not include the time for expanding these paths. We
have made measurements with a naive recursive expansion routine which never take
more than 50% of the query time. Also note that this process could be radically sped
up by precomputing unpacked representations of edges.

578 P. Sanders and D. Schultes

o o
o) (o]
o: ;gflgpe © 8 8%0 :O
] o To?g::i L
E =+ 80555:9-: - o
ét.o: Q o) gaig::H.: 'B :w
8 . oy " Vo
E 7 o 8 Oisﬁ::IIH.::'lé B
3~ LR ERTL ES N
] 0o o 8 i o H .-:O é |
R TE LT L LR B
. ﬁiii -é-.'.i:Ll N + |
g-.!.-r%!'%"f‘?uﬁﬁ B
o - - o

T T T
221 922 923 524

N
N
o

211 212 213 214 215 216 217 218 219
Dijkstra Rank

Fig. 2. Multilevel Queries. For each road network and each Dijkstra rank on the x-axis,
1 000 queries from random source nodes were performed. The results are represented
as box-and-whisker plot [I2]: each box spreads from the lower to the upper quartile
and contains the median, the whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually.

query times are scaling quite smoothly and the growth is much slower than the
exponential increase we would expect in a plot with logarithmic x axis, linear y
axis, and any growth rate of the form r” for Dijkstra rank r and some constant
power p. The curve is also not the straight line one would expect from a query
time logarithmic in r.

6 Discussion

Starting from a simple definition of local search, we have developed nontrivial
algorithms for constructing and querying highway hierarchies. We have demon-
strated that highway hierarchies of the largest road networks currently used can
be constructed in a few hours, i.e., fast enough to allow daily updates. The space
consumption is only a small constant factor of the input size. The query times
around 10 ms are more than fast enough for interactive use. The only previous
speedup techniques that would achieve comparable speedup (bit vectors, geo-
metric containers) have prohibitive preprocessing times for very large graphs.
Even faster preprocessing is a major issue for future work. We see many
small (and not so small) opportunities for improvement. The local nature of
preprocessing makes it likely that highway hierarchies can be quickly updated
dynamically when only a few edges (e.g., for taking traffic jams into account) or
a region of the network changes. We can also easily parallelise preprocessing.
Even faster queries are also interesting. For example, for some traffic simula-
tions, millions of shortest paths queries are needed and there is no overhead for
a user interface. Besides many small improvements (faster priority queues...)

Highway Hierarchies Hasten Exact Shortest Path Queries 579

a combination with other speedup techniques seems interesting. In particular,
bit vectors, geometric containers, or landmarks give the search a strong sense
of direction that highway hierarchies lack, i.e., these two basic approaches may
complement one another. Moreover, the higher levels of the hierarchy are so small
that superlinear time or space may be tolerable as long as the contributions of
the lower levels can be incorporated efficiently.

Acknowledgements

We would like to thank Andrew Goldberg, Rolf Mohring, Matthias Miiller-
Hannemann, Heiko Schilling, Frank Schulz, Mikkel Thorup, and Dorothea Wag-
ner for interesting discussions on various speedup techniques. Martin Holzer,
Domagoj Matijevic, Frank Schulz, and Thomas Willhalm have also helped with
data and tools for processing graphs.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269-271

2. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A meets graph
theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms. (2005) 156-165

3. Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs.
PhD thesis, Technische Universitét Karlsruhe (2005)

4. Fakcharoenphol, J., Rao, S.: Negative weight edges, shortest paths, near linear
time. In: 42nd Symposium on Foundations of Computer Science. (2001) 232-241

5. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. In: 42nd Symposium on Foundations of Computer Science. (2001) 242—
251

6. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable in-
formation. In: 4th Workshop on Algorithm Engineering and Experiments. Volume
2409 of LNCS., Springer (2002) 43-59

7. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: 6th Workshop on Algorithm Engineering and
Experiments (ALENEX). (2004)

8. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: 11th European Symposium on Algorithms. Volume
2832 of LNCS., Springer (2003) 776-787

9. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Proc. Miinster GI-Days. (2004)

10. Kéhler, E., Mohring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: 4th International Workshop on Efficient
and Experimental Algorithms. (2005)

11. U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line Files.
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html| (2002)

12. The R Development Core Team: R: A Language and Environment for Statistical
Computing, Reference Index. http://www.r-project.org/| (2004)

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://www.r-project.org/

	Introduction
	Preliminaries
	Construction
	Query
	Experiments
	Discussion

